
Deep Generative Models

16. Flow Matching

• 국가수리과학연구소 산업수학혁신센터 김민중

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Denoising score matching with Langevin dynamics

• Let 𝑞! "𝒙|𝒙 ≔ 𝑁 "𝒙|𝒙, 𝜎"𝐼 , 𝑞! "𝒙 ≔ ∫𝑝#$%$ 𝒙 𝑞! "𝒙|𝒙 𝑑𝒙
• Consider a sequence of positive noise scales

𝜎& < 𝜎" < ⋯ < 𝜎'
• 𝜎& is small enough 𝑞!! 𝒙 ≈ 𝑝#$%$ 𝒙
• 𝜎' is large enough 𝑞!" 𝒙 ≈ 𝑁 𝒙|𝟎, 𝜎'"𝑰

Data space Noise space

𝑝!"#" 𝑞$! 𝑞$" ⋯ 𝑞$%
≈ 𝑁 𝟎, 𝜎%&𝑰

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Denoising diffusion probabilistic models(DDPM)

• Positive noise scales 0 < 𝛽& < 𝛽"⋯ < 𝛽(< 1
• 𝒙)~𝑝#$%$ 𝒙 , construct latent variables 𝒙), 𝒙&, 𝒙", … , 𝒙(s.t.

𝑞 𝒙%|𝒙%*& ≔ 𝑵(𝒙%| 1 − 𝛽%𝒙%*&, 𝛽%𝑰)
• I.e., 𝑞 𝒙% 𝒙) = 𝑵(𝒙)| <𝛼%𝒙), 1 − <𝛼% 𝑰) where 𝛼% ≔ 1− 𝛽%,
<𝛼% ≔ ∏+,&

% 𝛼+
• Similar to SMLD, we can denote the perturbed data distribution

𝑞 𝒙% ≔ ?𝑞 𝒙% 𝒙 𝑝#$%$ 𝒙 𝑑𝒙

• The noise scales are prescribed s.t. 𝒙(~𝑞(𝒙() ≈ 𝑁 𝟎, 𝑰

𝑝!"#" 𝑞(𝒙') 𝑞(𝒙&) ⋯ 𝑞(𝒙()

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Summary of score-based models

• SMLD and DDPM involve sequentially corrupting training data
with slowly increasing noise, and then learning to reverse this
corruption to form a generative model of the data

• SMLD estimates the score at each noise scale and then use
Langevin dynamics to sample from a sequence of decreasing
noise scales during generation

• DDPM trains a sequence of probabilistic models to reverse each
step of the noise corruption, using knowledge of the functional
form of the reverse distributions to make training tractable

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Infinite noise levels

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Stochastic differential equation

• For 𝑡 ≥ 0, consider an SDE which possesses the following form
𝑑𝒙% = 𝒇 𝒙%, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘%

• 𝒇 ⋅, 𝑡 : ℝ# → ℝ# (drift coefficient)
• 𝑔 𝑡 ∈ ℝ (diffusion coefficient)
• 𝒘% denotes a standard Brownian motion
• 𝑑𝒘% can be viewed as infinitesimal white noise
• 𝒙% %∈),(is a stochastic process

• Numerically, the SDE can be seen as the limit
𝒙/0& = 𝒙/ + ∆𝑡𝑓 𝒙/, 𝑖∆𝑡 + 𝑔 𝑖∆𝑡 ∆𝑡𝒛/ 𝑖 = 0,1,⋯

• Under ∆𝑡 → 0, where 𝑡 = 𝑖∆𝑡 and 𝒛/~𝑁 𝟎, 𝑰

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example: 1-dim Ornstein-Uhlenbeck process

• The Ornstein-Uhlenbeck process 𝑥% is defined by
𝑑𝑥% = 𝜃 𝜇 − 𝑥% 𝑑𝑡 + 𝜎𝑑𝑤%

• where 𝜃 > 0, 𝜎 > 0, 𝜇 ∈ ℝ and 𝑤% is 1-dim standard Brownian
motion

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example: Forward SDE

𝑑𝒙% =
1
0 𝑑𝑡 + 0.1 0

0 0.1 𝑑𝒘%, 𝑝) 𝒙 = 𝑁 𝒙 0
0 , 0.1 0

0 0.1
• Then, 𝑝% 𝒙 = 𝑁 𝒙 𝑡

0 , 0.1 + 𝑡 0
0 0.1 + 𝑡

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example: 1-dim Ornstein-Uhlenbeck process

• Consider the Ornstein-Uhlenbeck process 𝑥% is defined by
𝑑𝑥% = −𝜃𝑥%𝑑𝑡 + 𝜎𝑑𝑤%

• Then,

𝑝 𝑥% 𝑥) = 𝑁 𝑥% 𝑒*1%𝑥),
𝜎"
2𝜃 1 − 𝑒*"1%

• If 𝑥)~𝑁 0, !
#

1
, then

𝑥%~𝑁 0,
𝜎"

2𝜃
, 𝑝% 𝑥 =

1
𝜋𝜎"/𝜃

exp −
𝜃
𝜎"
𝑥"

• 𝑝% 𝑥 satisfies the FP equation

0 = 𝜕%𝑝% 𝑥 − 𝜕2 𝑓𝑝% 𝑥 +
𝑔"

2
𝜕2" 𝑝% 𝑥

= 𝜕2 𝜃𝑥𝑝% 𝑥 +
𝑔"

2
𝜕2" 𝑝% 𝑥 = 0

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example: Ornstein-Uhlenbeck process

• The Ornstein-Uhlenbeck process
𝑑𝒙% = −𝜃𝒙%𝑑𝑡 + 𝜎𝑑𝒘%

• with 𝜃 ≥ 0 and 𝜎 > 0 adds noise to the datapoint 𝒙%
• As 𝑇 → ∞, all information is lost

𝑝!"#" 𝑝#(𝒙) ⋯ 𝑝((𝒙)⋯

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example: Ornstein-Uhlenbeck process

• The Ornstein-Uhlenbeck process
𝑑𝒙% = −𝜃𝒙%𝑑𝑡 + 𝜎𝑑𝒘%

• with 𝜃 ≥ 0 and 𝜎 > 0 adds noise to the datapoint 𝒙%
• As 𝑇 → ∞, all information is lost

• Since 𝑝 𝒙% 𝒙) = 𝑁 𝒙% 𝑒*1%𝒙),
!#

"1 1 − 𝑒*"1% 𝑰 , we have 𝒙(is

approximately distributed as 𝑁 𝟎, !
#

"1 𝑰 if 𝜃 > 0 and 𝑇 ≈ ∞

• Sampling 𝒙(~𝑁 𝟎, !
#

"1
𝑰 is easy. Can we reverse the SDE to

sample 𝒙)?

𝑝!"#" 𝑝#(𝒙) ⋯ 𝑝((𝒙)⋯

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Perturbing data with stochastic processes

Stochastic process

Probability densities

Infinitesimal noiseDeterministic drift

Stochastic differential equation (SDE)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Forward-time SDE

• To simulate
𝑑𝒙% = 𝒇 𝒙%, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘%, 𝒙)~𝑝)

• for 0 < 𝑡, sample 𝒙)~𝑝) and compute
𝒙/0& = 𝒙/ + ∆𝑡𝑓 𝑥/, 𝑖∆𝑡 + 𝑔 𝑖∆𝑡 ∆𝑡𝒛/ 𝑖 = 0,1,⋯

• for sufficiently small ∆𝑡 > 0 and 𝒛/~𝑁 𝟎, 𝑰

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Generating samples by reversing the SDE

• For an SDE,
𝑑𝒙% = 𝒇 𝒙%, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘%, 𝒙)~𝑝)

• has a corresponding reverse SDE, whose closed form is given by
𝑑𝒙% = 𝒇 𝒙%, 𝑡 − 𝑔" 𝑡 ∇𝒙$ log 𝑝% 𝒙% 𝑑𝑡 + 𝑔 𝑡 𝑑c𝒘%, 𝒙(~𝑝(
• 𝑑𝑡 represents a negative infinitesimal time step
• c𝒘% is a standard BM when time flows backwards from 𝑇 to 0.

I.e. c𝒘% = 𝒘(−𝒘(*%

• In order to compute the reverse SDE, we need to estimate
∇𝒙 log 𝑝% 𝒙 which is the score function of 𝑝% 𝒙

Reverse-time diffusion equation models
B. D. O. Anderson. Stochastic Processes and their Applications. 1982

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Generating samples by reversing the SDE

• In order to compute the reverse SDE, we need to estimate
∇𝒙 log 𝑝% 𝒙 which is the score function of 𝑝% 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Estimating the reverse SDE with score-based models

• Solving the reverse SDE requires us to know the terminal
distribution 𝑝(𝒙 , and the score function ∇𝒙 log 𝑝% 𝒙

• By design, 𝑝(𝒙 is close to the prior distribution 𝜋 𝒙 which is
fully tractable

• In order to estimate ∇𝒙 log 𝑝% 𝒙 , train a time-dependent score-
based model 𝒔1 𝒙, 𝑡 such that

𝒔1 𝒙, 𝑡 ≈ ∇𝒙 log 𝑝% 𝒙

• This is analogous to the NCSM 𝒔1 𝒙, 𝑖 used for finite noise
scales, trained such that 𝒔1 𝒙, 𝑖 ≈ ∇𝒙 log 𝑝!% 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Estimating the reverse SDE with score-based models

• Training objective for 𝒔1 𝒙, 𝑡 is a continuous weighted
combination of Fisher divergences, given by

𝐸%~5),(𝜆 𝑡 𝐸𝒙~6$ 𝒙 𝒔1 𝒙, 𝑡 − ∇𝒙 log 𝑝% 𝒙 "
"

• where 𝑈 0, 𝑇 denotes a uniform distribution over the time
interval 0, 𝑇 and 𝜆:ℝ0 → ℝ0 is a positive weighting function

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Foundation of score-based models

argmin
1

𝐸𝒙~6$ 𝒙 𝒔1 𝒙, 𝑡 − ∇𝒙 log 𝑝% 𝒙 "
"

= argmin
1

𝐸𝒙~6&'$' 𝒙 𝐸𝒙$~6 𝒙$|𝒙 𝒔1 𝒙%, 𝑡 − ∇𝒙$ log 𝑝 𝒙%|𝒙 "
"

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Estimating the reverse SDE with score-based models

• Training objective for 𝒔1 𝒙, 𝑡 is a continuous weighted
combination of Fisher divergences, given by

𝐸%~5),(𝜆 𝑡 𝐸𝒙~6$ 𝒙 𝒔1 𝒙, 𝑡 − ∇𝒙 log 𝑝% 𝒙 "
"

• Where 𝑈 0, 𝑇 denotes a uniform distribution over the time
interval 0, 𝑇 and 𝜆:ℝ0 → ℝ0 is a positive weighting function

• The objective can be written as

𝐸%~5),(m

n

𝜆 𝑡 𝐸𝒙~6&'$' 𝒙 𝐸𝒙$~6 𝒙$|𝒙 o

p

q

q

𝒔1 𝒙%, 𝑡

− ∇𝒙$ log 𝑝 𝒙%|𝒙 "
"

• Typically, we use 𝜆 𝑡 ∝ 1/𝐸 ∇𝒙$ log 𝑝 𝒙%|𝒙 "
"

to balance the
magnitude of different score matching losses across time

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Remark of the transition kernel 𝑝 𝒙!|𝒙

• We typically need to know the transition kernel 𝑝 𝒙%|𝒙
• When 𝒇 ⋅, 𝑡 is affine, the transition kernel is always a

(conditional) Gaussian distribution, where the mean and variance
are often known in closed-forms

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

How to solve the reverse SDE

• By solving the estimated reverse SDE with numerical SDE
solvers, we can simulate the reverse stochastic process for
sample generation

• Euler-Maruyama method(analogous to Euler for ODEs)
• Small positive time step ∆𝑡 ≈ 0
• Initializes 𝑡 = 𝑇, and iterates the following procedure until
𝑡 ≈ 0

∆𝒙 ← 𝒇 𝒙, 𝑡 − 𝑔" 𝑡 𝒔1 𝒙, 𝑡 ∆𝑡 + 𝑔 𝑡 ∆𝑡𝒛
𝒙 ← 𝒙 + ∆𝒙
𝑡 ← 𝑡 − ∆𝑡

• Here 𝒛~𝑁 𝟎, ∆𝑡𝑰
• I.e. 𝒙%*∆% = 𝒙% − ∆𝑡 𝒇 𝒙%, 𝑡 − 𝑔" 𝑡 𝒔1 𝒙%, 𝑡 + 𝑔 𝑡 ∆𝑡𝒛

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Perturbing data with stochastic processes

Stochastic process

Probability densities

Infinitesimal noiseDeterministic drift

Stochastic differential equation (SDE)

WLOG: Toy SDE

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Generation via reverse stochastic processes

Forward SDE (t: 0àT)

Reverse SDE (t: Tà0)

Infinitesimal noise in the reverse
time direction

Score function!

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Score-based generative modeling via SDEs

• Time-dependent score-based model
𝒔1 𝒙, 𝑡 ≈ ∇𝒙 log 𝑝% 𝒙

• Training objective

𝐸%~5),(𝜆 𝑡 𝐸𝒙~6$ 𝒙 𝒔1 𝒙, 𝑡 − ∇𝒙 log 𝑝% 𝒙 "
"

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Score-based generative modeling via SDEs

• Time-dependent score-based model
𝒔1 𝒙, 𝑡 ≈ ∇𝒙 log 𝑝% 𝒙

• Training objective

𝐸%~5),(𝜆 𝑡 𝐸𝒙~6$ 𝒙 𝒔1 𝒙, 𝑡 − ∇𝒙 log 𝑝% 𝒙 "
"

• In case of 𝑑𝒙% = 𝜎 𝑡 𝑑𝒘% with 0 ≤ 𝑡 ≤ 𝑇, the reverse-time SDE
is

𝑑𝒙% = −𝜎" 𝑡 𝒔1 𝒙%, 𝑡 𝑑𝑡 + 𝜎(𝑡)𝑑c𝒘%
• Euler-Maruyama method

𝒙%*∆% = 𝒙% − 𝜎" 𝑡 𝒔1 𝒙%, 𝑡 ∆𝑡 + 𝜎 𝑡 𝒛
• where 𝒛~𝑁 𝟎, ∆𝑡𝑰

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Predictor-Corrector sampling methods

• In addition, there are two special properties of our reverse SDE
that allow for even more flexible sampling methods:
• estimation of ∇𝒙 log 𝑝% 𝒙 via time-dependent score-based

model 𝒔1 𝒙, 𝑡
• sampling from each marginal distribution 𝑝% 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Predictor-Corrector sampling methods

• Thus, we can apply score-based MCMC approaches to fine-tune
the trajectories obtained from numerical SDE solvers

• We propose Predictor-Corrector samplers
• Predictor: any numerical SDE solver predicting
𝒙%*∆%~𝑝%*∆% 𝒙 from an existing sample 𝒙%~𝑝% 𝒙

• Corrector: score-based MCMC procedure

• At each step of the Predictor-Corrector sampler, we first use the
predictor to choose a proper step size ∆𝑡 > 0, and then predict
𝒙%*∆% based on the current sample 𝒙%

• Next, we run several corrector steps to improve the
sample 𝒙%*∆% according to our score-based model
𝒔1 𝒙%*∆%, 𝑡 − ∆𝑡 so that 𝒙%*∆% becomes a high-quality sample
from 𝑝%*∆% 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Predictor-Corrector sampling methods

• Predictor-Corrector sampling
• Predictor: Numerical SDE solver
• Corrector: Score-based MCMC

predictor

corrector

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

VE and VP forward SDEs

• The O-U process 𝒙% is defined by
𝑑𝒙% = −𝜃𝒙%𝑑𝑡 + 𝜎𝑑𝒘%

• where 𝜃 > 0, 𝜎 > 0 and 𝒘% is 𝑑-dim standard Brownian motion

• Two types O-U processes are primarily considered for the
forward SDE
• Variance-exploding(VE)

𝑑𝒙% = 𝜎𝑑𝒘%
𝑝 𝒙% 𝒙) = 𝒙% 𝛾%𝒙), 𝜎%"𝑰 , 𝛾% = 1, 𝜎%" = 𝑡𝜎"

• Variance-preserving(VP)
𝑑𝒙% = −𝜃𝒙%𝑑𝑡 + 𝜎𝑑𝒘%

𝑝 𝒙% 𝒙) = 𝒙% 𝛾%𝒙), 𝜎%"𝑰 , 𝛾% = 𝑒*1%, 𝜎%" =
𝜎"

2𝜃
1 − 𝑒*"1%

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

VE and VP forward SDEs

• Two types O-U processes are primarily considered for the
forward SDE
• Variance-exploding(VE)

𝑑𝒙% = 𝜎𝑑𝒘%
𝑝 𝒙% 𝒙) = 𝒙% 𝛾%𝒙), 𝜎%"𝑰 , 𝛾% = 1, 𝜎%" = 𝑡𝜎"

• Variance-preserving(VP)
𝑑𝒙% = −𝜃𝒙%𝑑𝑡 + 𝜎𝑑𝒘%

𝑝 𝒙% 𝒙) = 𝒙% 𝛾%𝒙), 𝜎%"𝑰 , 𝛾% = 𝑒*1%, 𝜎%" =
𝜎"

2𝜃
1 − 𝑒*"1%

• In both cases,
𝑝 𝒙% 𝒙) = 𝒙% 𝛾%𝒙), 𝜎%"𝑰

• i.e. 𝒙%|𝒙) = 𝛾%𝒙) + 𝜎%𝝐 where 𝝐~𝑁(𝟎, 𝑰)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

General VE SDE

• Let 𝜎 𝑡 be a non-decreasing function of 𝑡

• General VE SDE:

𝑑𝒙% =
𝑑 𝜎" 𝑡

𝑑𝑡
𝑑𝒘%

𝑝 𝒙% 𝒙) = 𝑁 𝒙% 𝛾%𝒙), 𝜎%"𝑰 , 𝛾% = 1, 𝜎%" = 𝜎" 𝑡

• Although the mean is preserved, the variance explodes

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

General VP SDE

• Let 𝜃: 0,∞ → ℝ0 be a function

• General VP SDE:

𝑑𝒙% = −
𝜃 𝑡
2

𝒙%𝑑𝑡 + 𝜃 𝑡 𝑑𝒘%

𝑝 𝒙% 𝒙) = 𝑁 𝒙% 𝛾%𝒙), 𝜎%"𝑰 ,

𝛾% = 𝑒*
&
" ∫(

$ 1 + #+, 𝜎%" = 1 − 𝑒* ∫(
$ 1 + #+

• In particular,

Var 𝒙% = 𝑰 + 𝑒* ∫(
$ 1 + #+ Var 𝒙) − 𝑰

• If Var 𝒙) = 𝑰, then
Var 𝒙% = 𝑰

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Training with O-U and DSM

• Using 𝒙%|𝒙) = 𝛾%𝒙) + 𝜎%𝝐 where 𝝐~𝑁(𝟎, 𝑰), the score function
simplifies to

∇𝒙$ log 𝑝 𝒙%|𝒙 =
𝛾%𝒙 − 𝒙%
𝜎%"

= −
𝝐
𝜎%

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Normalizing flow models

• Consider a directed, latent variable model over observed
variables 𝑋 and latent variables 𝑍

• In a normalizing flow model, the mapping between 𝑍 and 𝑋,
given by 𝒇1: ℝ# → ℝ#, is deterministic and invertible such that
𝑋 = 𝒇1 𝑍 and 𝑍 = 𝒇1

*& 𝑋

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

A Flow of Transformations

𝒇1 𝒛) ≔ 𝒇: ∘ 𝒇:*& ∘ ⋯ ∘ 𝒇& 𝒛) = 𝒛:

• Start with a simple distribution for 𝒛) (e.g., Gaussian)
• Apply a sequence of 𝐾 invertible transformations to finally

obtain 𝒙 = 𝒛:
𝒇1*& 𝒙 = 𝒇&*& ∘ 𝒇"*& ∘ ⋯ ∘ 𝒇:*& 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

A Flow of Transformations

𝒇1 𝒛) ≔ 𝒇: ∘ 𝒇:*& ∘ ⋯ ∘ 𝒇& 𝒛) = 𝒛: = 𝒙
𝒇1*& 𝒙 = 𝒇&*& ∘ 𝒇"*& ∘ ⋯ ∘ 𝒇:*& 𝒙

• The marginal likelihood 𝑝; 𝒙 is given by

𝑝; 𝒙; 𝜃 = 𝑝< 𝒇1*& 𝒙 det
𝜕𝒇1*& 𝒙
𝜕𝒙

= 𝑝< 𝒛 det
𝜕𝒇1 𝒛
𝜕𝒛

*&

= 𝑝< 𝒇1*& 𝒙 �
=,&

:

det
𝜕𝒇=*& 𝒙=
𝜕𝒙=

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning and Inference

• Learning via maximum likelihood over the dataset 𝐷

max
1
log 𝑝; 𝐷; 𝜃 = �

𝒙∈>

log 𝑝< 𝒇1*& 𝒙 + log det
𝜕𝒇1

*& 𝒙
𝜕𝒙

• Exact likelihood evaluation via inverse transformation 𝒙 ⟼ 𝒛 and
change of variables formula

• Sampling via forward transformation 𝒛 ⟼ 𝒙
𝒛~𝒑< 𝒛 , 𝒙 = 𝒇1(𝒛)

• Latent representations inferred via inverse transformation (no
inference network required): 𝒛 = 𝒇1

*𝟏(𝒙)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Remark

• How to enforce invertibility?
• How to compute its inverse?
• How to compute the Jacobian efficiently?

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Residual flow (2019, 2010)

• Flow has the form
𝒇=0& 𝒛= = 𝒛= + 𝛿𝒖=(𝒛=)

• for some 𝛿 > 0 and Lipschitz residual connection 𝒖=

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Continuous time limit

• Residual flow are transformations of the form
𝒇=0& 𝒛= = 𝒛= + 𝛿𝒖=(𝒛=)

• for some 𝛿 > 0 and Lipschitz residual connection 𝒖=
• We can re-arrange this to get

𝒇=0& 𝒛= − 𝒛=
𝛿

= 𝒖=(𝒛=)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Continuous time limit

• Let 𝛿 = 1/𝐾 and take 𝐾 → ∞. Then a composition of residual
flows

𝒇: ∘ 𝒇:*& ∘ ⋯ ∘ 𝒇&
• is given by an ODE

𝑑𝒛%
𝑑𝑡

= lim
@→)

𝒛%0@ − 𝒛%
𝛿

= lim
@→)

𝒇%0@ 𝒛% − 𝒛%
𝛿

=𝒖%(𝒛%)
• where the flow of ODE 𝒇: 0,1 ×ℝ# → ℝ# is defined s.t.,

𝑑𝒇%
𝑑𝑡

𝒛 = 𝒖% 𝒇% 𝒛
• I.e., 𝒇% maps initial condition 𝒛) to the ODE at time 𝑡 > 0:

𝒛% ≔ 𝒇% 𝒛) = 𝒛) +?
)

%
𝒖+ 𝒛+ 𝑑𝑠

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Flow Matching (2022)

• New paradigms for generative modeling build on Continuous
Normalizing Flow

• Present the notion of FM, a simulation-free approach for
training CNFs based on regressing vector fields of fixed
conditional probability paths

(a) Conditional probability
path pt(x|x1).

(b) (Marginal) Probability
path pt(x).

(c) Conditional velocity field
ut(x|x1).

(d) (Marginal) Velocity field
ut(x).

Figure 3 Path design in Flow Matching. Given a fixed target sample X = x1, its conditional velocity field ut(x|x1)
generates the conditional probability path pt(x|x1). The (marginal) velocity field ut(x) results from the aggregation of
all conditional velocity fields—and similarly for the probability path pt(x).

and Xt = (1→ t)X0 + tX1. Remarkably, the objectives in (2.4) and (2.7) provide the same gradients to learn
uω
t , i.e.,

↑ωLFM(ω) = ↑ωLCFM(ω). (2.8)

Finally, by plugging ut(x|x1) from (2.6) into equation (2.7), we get the simplest implementation of Flow
Matching:

LOT,Gauss

CFM (ω) = Et,X0,X1↓uω
t (Xt)→ (X1 →X0) ↓2, where t ↔ U [0, 1], X0 ↔ N (0, I), X1 ↔ q. (2.9)

A standalone implementation of this quick tour in pure PyTorch is provided in code 1. Later in the manuscript,
we will cover more sophisticated variants and design choices, all of them implemented in the accompanying
flow_matching library.

6

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Preliminaries: CNFs

• Time-dependent vector field
𝒖: 0,1 ×ℝ# → ℝ#

• Vector field 𝒖% can be used to construct a time-dependent
diffeomorphic map called flow 𝜓: 0,1 ×ℝ# → ℝ# defined via
ODE

𝑑𝜓%
𝑑𝑡

𝒙 = 𝒖% 𝜓% 𝒙 , 𝜓) 𝒙 = 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Preliminaries: CNFs

• Data space: ℝ#
• Probability density path

𝑝: 0,1 ×ℝ# → ℝ0
• which is a time-dependent probability density function. I.e.
∫ 𝑝% 𝒙 𝑑𝒙 = 1 for any 𝑡 ∈ 0,1

• Time-dependent vector field
𝒖: 0,1 ×ℝ# → ℝ#

• Vector field 𝒖% can be used to construct a time-dependent
diffeomorphic map called flow 𝜓: 0,1 ×ℝ# → ℝ# defined via
ODE

𝑑𝜓%
𝑑𝑡

𝒙 = 𝒖% 𝜓% 𝒙 , 𝜓) 𝒙 = 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Preliminaries: CNFs

• A flow model 𝒙% = 𝜓%(𝒙)) is defined by a diffeomorphism
𝜓%: ℝ# → ℝ#

• A flow 𝜓%: ℝ# → ℝ# (square grid) is defined by a velocity field
𝒖%: ℝ# → ℝ# (blue arrows)

Figure 5 A flow model Xt = ωt(X0) is defined by a di!eomorphism ωt : Rd → Rd (visualized with a brown square grid)
pushing samples from a source RV X0 (left, black points) toward some target distribution q (right). We show three
di!erent times t.

where [n] := {1, 2, . . . , n}. To keep notation concise, define also Cr(Rn) := Cr(Rm,R) so, for example,
C1(Rm) denotes the continuously di!erentiable scalar functions. An important class of functions are the Cr

diffeomorphism; these are invertible functions ω → Cr(Rn,Rn) with ω→1 → Cr(Rn,Rn).

Then, given a RV X ↑ pX with density pX , let us consider a RV Y = ω(X), where ω : Rd ↓ Rd is a C1

di!eomorphism. The PDF of Y , denoted pY , is also called the push-forward of pX . Then, the PDF pY can be
computed via a change of variables:

E [f(Y)] = E [f(ω(X))] =

∫
f(ω(x))pX(x)dx =

∫
f(y)pX(ω→1(y))

∣∣det εyω→1(y)
∣∣ dy,

where the third equality is due the change of variables x = ω→1(y), εyϑ(y) denotes the Jacobian matrix (of
first order partial derivatives), i.e.,

[εyϑ(y)]i,j =
εϑi

εxj
, i, j → [d],

and detA denotes the determinant of a square matrix A → Rd↑d. Thus, we conclude that the PDF pY is

pY (y) = pX(ω→1(y))
∣∣det εyω→1(y)

∣∣ . (3.14)

We will denote the push-forward operator with the symbol ϖ, that is

[ωωpX] (y) := pX(ω→1(y))
∣∣det εyω→1(y)

∣∣ . (3.15)

3.4 Flows as generativemodels

As mentioned in section 2, the goal of generative modeling is to transform samples X0 = x0 from a source
distribution p into samples X1 = x1 from a target distribution q. In this section, we start building the tools
necessary to address this problem by means of a flow mapping ωt. More formally, a Cr flow is a time-dependent
mapping ω : [0, 1]↔Rd ↓ Rd implementing ω : (t, x) ↗↓ ωt(x). Such flow is also a Cr([0, 1]↔Rd,Rd) function,
such that the function ωt(x) is a Cr di!eomorphism in x for all t → [0, 1]. A flowmodel is a continuous-time
Markov process (Xt)0↓t↓1 defined by applying a flow ωt to the RV X0:

Xt = ωt(X0), t → [0, 1], where X0 ↑ p. (3.16)

See Figure 5 for an illustration of a flow model. To see why Xt is Markov, note that, for any choice of
0 ↘ t < s ↘ 1, we have

Xs = ωs(X0) = ωs(ω
→1
t (ωt(X0))) = ωs|t(Xt), (3.17)

where the last equality follows from using equation (3.16) to set Xt = ωt(X0), and defining ωs|t := ωs ≃ ω→1
t ,

which is also a di!eomorphism. Xs = ωs|t(Xt) implies that states later than Xt depend only on Xt, so Xt is
Markov. In fact, for flow models, this dependence is deterministic.

10

Figure 6 A flow ωt : Rd → Rd (square grid) is defined by a velocity field ut : Rd → Rd (visualized with blue arrows)
that prescribes its instantaneous movements at all locations. We show three di!erent times t.

In summary, the goal generative flowmodeling is to find a flow ωt such that

X1 = ω1(X0) → q. (3.18)

3.4.1 Equivalence between flows and velocity fields

A Cr flow ω can be defined in terms of a Cr([0, 1]↑ Rd,Rd) velocity field u : [0, 1]↑ Rd ↓ Rd implementing
u : (t, x) ↔↓ ut(x) via the following ODE:

d

dt
ωt(x) = ut(ωt(x)) (flow ODE) (3.19a)

ω0(x) = x (flow initial conditions) (3.19b)

See figure 6 for an illustration of a flow together with its velocity field.

A standard result regarding the existence and uniqueness of solutions ωt(x) to equation (3.19) is (see e.g.,
Perko (2013); Coddington et al. (1956)):

Theorem 1 (Flow local existence and uniqueness). If u is Cr([0, 1] ↑ Rd,Rd), r ↗ 1 (in particular,
locally Lipschitz), then the ODE in (3.19) has a unique solution which is a Cr(!,Rd) di!eomorphism
ωt(x) defined over an open set ! which is super-set of {0}↑ Rd.

This theorem guarantees only the local existence and uniqueness of a Cr flow moving each point x ↘ Rd

by ωt(x) during a potentially limited amount of time t ↘ [0, tx). To guarantee a solution until t = 1 for all
x ↘ Rd, one must place additional assumptions beyond local Lipschitzness. For instance, one could consider
global Lipschitness, guaranteed by bounded first derivatives in the C1 case. However, we will later rely on
a di!erent condition—namely, integrability—to guarantee the existence of the flow almost everywhere, and
until time t = 1.

So far, we have shown that a velocity field uniquely defines a flow. Conversely, given a C1 flow ωt, one can
extract its defining velocity field ut(x) for arbitrary x ↘ Rd by considering the equation d

dtωt(x→) = ut(ωt(x→)),
and using the fact that ωt is an invertible di!eomorphism for every t ↘ [0, 1] to let x→ = ω↑1

t (x). Therefore,
the unique velocity field ut determining the flow ωt is

ut(x) = ω̇t(ω
↑1
t (x)), (3.20)

where ω̇t :=
d
dtωt. In conclusion, we have shown the equivalence between Cr flows ωt and Cr velocity fields ut.

3.4.2 Computing target samples from source samples

Computing a target sample X1—or, in general, any sample Xt—entails approximating the solution of the
ODE in equation (3.19) starting from some initial condition X0 = x0. Numerical methods for ODEs is a
classical and well researched topic in numerical analysis, and a myriad of powerful methods exist (Iserles,
2009). One of the simplest methods is the Euler method, implementing the update rule

Xt+h = Xt + hut(Xt) (3.21)

11

𝒙!~𝑝! 𝒙! 𝜓"(𝒙!)𝜓#(𝒙!)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Equivalence between flows and velocity fields

• A 𝐶F flow 𝜓: 0,1 ×ℝ# → ℝ# can be defined in terms of a
𝐶F 0,1 ×ℝ#, ℝ# velocity field 𝒖: 0,1 ×ℝ# → ℝ# implementing
𝒖: 𝑡, 𝒙 ⟼ 𝒖% 𝒙 via the following ODE:

𝑑𝜓%
𝑑𝑡

𝒙 = 𝒖% 𝜓% 𝒙 , 𝜓) 𝒙 = 𝒙

• If 𝒖 is 𝐶F 0,1 ×ℝ#, ℝ# , 𝑟 ≥ 1, then the ODE has a unique
solution which is a 𝐶F Ω,ℝ# diffeomorphism 𝜓% defined over
an open set Ω which is a super-set of 0 ×ℝ#

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Preliminaries: CNFs

• Chen et al.(2018) suggested the modeling the vector field 𝒗%
with a neural network 𝒗%(𝒙, 𝜃) where 𝜃 is learnable parameters

• 𝒗%(𝒙, 𝜃) leads to a deep parametric model of the flow 𝜓% (called
CNF)

• CNF is used to reshape a simple prior 𝑝) to a more complicated
one 𝑝& via push-forward equation

𝑝% 𝒙 = 𝜓% ∗𝑝) 𝒙 ≔ 𝑝) 𝜓%*& 𝒙 det
𝜕𝜓%*&

𝜕𝒙
𝒙

Figure 7 A velocity field ut (in blue) generates a probability path pt (PDFs shown as contours) if the flow defined by
ut (square grid) reshapes p (left) to pt at all times t → [0, 1).

where h = n→1 > 0 is a step size hyper-parameter with n → N. To draw a sample X1 from the target
distribution, apply the Euler method starting at some X0 ↑ p to produce the sequence Xh, X2h, . . . , X1. The
Euler method coincides with first-order Taylor expansion of Xt:

Xt+h = Xt + hẊt + o(h) = Xt + hut(Xt) + o(h),

where o(h) stands for a function growing slower than h, that is, o(h)/h ↓ 0 as h ↓ 0. Therefore, the Euler
method accumulates o(h) error per step, and can be shown to accumulate o(1) error after n = 1/h steps.
Therefore, the error of the Euler method vanishes as we consider smaller step sizes h ↓ 0. The Euler method
is just one example among many ODE solvers. Code 2 exemplifies another alternative, the second-order
midpoint method, which often outperforms the Euler method in practice.

Code 2: ComputingX1 withMidpoint solver

1 from flow_matching.solver import ODESolver
2 from flow_matching.utils import ModelWrapper
3

4 class Flow(ModelWrapper):
5 def __init__(self, dim=2, h=64):
6 super().__init__()
7 self.net = torch.nn.Sequential(

8 torch.nn.Linear(dim + 1, h), torch.nn.ELU(),
9 torch.nn.Linear(h, dim))

10

11 def forward(self, x, t):
12 t = t.view(-1, 1).expand(*x.shape[:-1], -1)
13 return self.net(torch.cat((t, x), -1))
14

15 velocity_model = Flow()

16

17 ... # Optimize the model parameters s.t. model(x_t, t) = ut(Xt)
18

19 x_! = torch.randn(batch_size, *data_dim) # Specify the initial condition

20

21 solver = ODESolver(velocity_model=velocity_model)

22 num_steps = 100
23 x_1 = solver.sample(x_init=x_!, method='midpoint', step_size=1.0 / num_steps)

12

A velocity field 𝒗# (in blue) generates a probability path 𝑝#

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Preliminaries: Loss of CNFs

• For 𝒙#$%$ = 𝜓&(𝒙)),

ℒIJK = − log 𝑝 𝜓& 𝒙) = − log 𝑝) 𝑥) +?
)

&
∇ ⋅ 𝒖% 𝜓% 𝒙) 𝑑𝑡

• CNFs define continuous probability density transformations
using ordinary differential equations (ODEs)

• However, estimating the log-likelihood requires simulating these
ODEs

• This simulation process is computationally expensive, slow, and
results in slow inference

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Flow MatchingThe Generative Modeling Problem

x

ℝd

𝒙!~𝑝! 𝒙!
Simple prior

𝒙"~𝑝" 𝒙" ≈ 𝑝$%#%
unknown

FLOW MATCHING FOR GENERATIVE MODELING
Yaron Lipman et al. ICLR 2023

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Let 𝑝% be a probability path s.t., 𝑝) is a simple prior (e.g.,
standard normal distribution) and let 𝑝& ≈ 𝑝#$%$

• Probability path 𝑝% is transformed through a time-dependent
flow 𝜓% or velocity field 𝒖%

Flow Matching

𝒙!~𝑝! 𝒙!
Simple prior

𝒙"~𝑝" 𝒙" ≈ 𝑝$%#%
unknown

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• The objective of FM is designed to match this target prob. path
• Given target prob. path 𝑝% 𝒙 and corresponding vector field
𝒖% 𝒙 which generates 𝑝% 𝒙

ℒKM 𝜃 ≔ 𝐸%~5),& 𝐸𝒙~6$ 𝒙 𝒗% 𝒙; 𝜃 − 𝒖% 𝒙 "

• where 𝜃 denotes the learnable parameters of the CNF vector
field 𝒗%

• FM loss regresses the vector field 𝒖% with a neural network 𝒗%
• This objective is intractable since we have no prior knowledge

for what an appropriate 𝒖% and 𝑝%

The objective of FM

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Construct both 𝑝% and 𝒖% using probability paths and vector
fields that are only defined per sample

• Given a particular data sample 𝒙&, we denote by 𝑝% 𝒙|𝒙& a
conditional probability path s.t.,

𝑝) 𝒙|𝒙& = 𝑝) 𝒙
𝑝& 𝒙|𝒙& = a distribution concentrated around 𝒙&

• E.g., 𝑝& 𝒙|𝒙& = 𝑁 𝒙 𝒙&, 𝜎"𝑰
• We will define 𝑝% 𝒙|𝒙& , 0 < 𝑡 < 1 conditional probability path

per sample 𝒙&

Construction of 𝑝! , 𝒖!

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Marginalizing the conditional probability paths over 𝑝#$%$ give
rise the marginal probability path

𝑝% 𝒙 = ?𝑝% 𝒙|𝒙& 𝑝#$%$ 𝒙& 𝑑𝒙&

• At time 𝑡 = 1, the marginal probability 𝑝& is a mixture
distribution so that 𝑝& ≈ 𝑝#$%$

𝑝& 𝒙 = ?𝑝& 𝒙|𝒙& 𝑝#$%$ 𝒙& 𝑑𝒙& ≈ 𝑝#$%$ 𝒙

• Let 𝒖% ⋅ 𝒙& : ℝ# → ℝ# be a conditional vector field that
generates 𝑝% ⋅ |𝒙& (or conditional flow 𝜓% ⋅ |𝒙& : ℝ# → ℝ#)

Construction of 𝑝! , 𝒖!

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Define a marginal vector field by

𝒖% 𝒙 = ?𝒖% 𝒙|𝒙&
𝑝% 𝒙 𝒙& 𝑝#$%$ 𝒙&

𝑝% 𝒙
𝑑𝒙&

• The marginal vector field 𝒖% 𝒙 generates the marginal
probability path 𝑝% 𝒙

Construction of 𝑝! , 𝒖!

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

ℒIKM 𝜃
≔ 𝐸%~5),& 𝐸𝒙!~6&'$' 𝒙! 𝐸𝒙~6$ 𝒙 𝒙& 𝒗% 𝒙; 𝜃 − 𝒖% 𝒙 𝒙& "

• Assume that 𝑝% 𝒙 > 0 for all 𝒙 ∈ ℝ# and 𝑡 ∈ 0,1 . Then
argmin

1
ℒKM 𝜃 = argmin

1
ℒIKM 𝜃

Objective for Conditional Flow Matching

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• The CMF works with any choice of conditional probability path
and conditional vector field

• We will discuss the construction of 𝑝% 𝒙 𝒙& and 𝒖% 𝒙 𝒙& for a
general family of Gaussian conditional probability paths

Gaussian conditional probability paths

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• The CMF works with any choice of conditional probability path
and conditional vector field

• We will discuss the construction of 𝑝% 𝒙 𝒙& and 𝒖% 𝒙 𝒙& for a
general family of Gaussian conditional probability paths

• Consider conditional probability paths of the form
𝑝% 𝒙 𝒙& = 𝑁 𝒙 𝝁% 𝒙& , 𝜎% 𝒙& "𝑰

• 𝝁: 0,1 ×ℝ# → ℝ# is the time-dependent mean
• 𝜎: 0,1 ×ℝ# → ℝ0 is the time-dependent scalar standard

deviation
• Set 𝝁) 𝒙& = 𝟎, 𝜎) 𝒙& = 1, so that 𝑝) 𝒙 𝒙& = 𝑁 𝒙 𝟎, 𝑰 and
𝝁& 𝒙& = 𝒙&, 𝜎) 𝒙& = 𝜎N/O

Gaussian conditional probability paths

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Remark: there is an infinite number of vector fields 𝒖% 𝒙 𝒙&
that generate any probability path

• Use the simplest vector field corresponding to a canonical
transformation

• Consider the flow (conditioned on 𝒙&)
𝜓% 𝒙 ≔ 𝜎% 𝒙& 𝒙 + 𝝁% 𝒙&

• Since 𝜓% is the affine transformation,
𝜓% 𝒙 = 𝑁 𝒙 𝝁% 𝒙& , 𝜎% 𝒙& "𝑰 , when 𝒙~𝑁(𝟎, 𝑰)

• It means that conditional flow 𝜓% pushes the noise distribution
𝑝) 𝒙 𝒙& = 𝑝) 𝒙 to 𝑝% 𝒙 𝒙& . I.e.,

𝜓% ∗𝑝) 𝒙 = 𝑝% 𝒙 𝒙&

Gaussian conditional probability paths

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• This flow provides a vector field that generates the conditional
probability path:

𝑑𝜓%
𝑑𝑡

𝒙 = 𝒖% 𝜓% 𝒙 𝒙&
• 𝒖% ⋅ 𝒙& will see later

• Reparametrize 𝑝% 𝒙 𝒙& in terms of 𝒙). Then CFM loss ℒIKM 𝜃
𝐸%~5),& 𝐸𝒙!~6&'$' 𝒙! 𝐸𝒙~6$ 𝒙 𝒙& 𝒗% 𝒙; 𝜃 − 𝒖% 𝒙 𝒙& "

• can be written as

𝐸%~5),& 𝐸𝒙!~6&'$' 𝒙! 𝐸𝒙(~6(𝒙(𝒗% 𝜓% 𝒙) −
𝑑
𝑑𝑡
𝜓% 𝒙)

"

Gaussian conditional probability paths

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Let 𝑝% 𝒙 𝒙& be a Gaussian probability path. I.e., 𝑝% 𝒙 𝒙& =
𝑁 𝒙 𝝁% 𝒙& , 𝜎% 𝒙& "𝑰

• Let 𝜓% be its corresponding flow map. I.e., 𝜓% 𝒙 ≔ 𝜎% 𝒙& 𝒙 +
𝝁% 𝒙&

• Then the unique vector field 𝒖% 𝒙 𝒙& that defines 𝜓% has the
form

𝒖% 𝒙 𝒙& =
𝜎%P 𝒙&
𝜎% 𝒙&

𝒙 − 𝝁%(𝒙&) + 𝝁%P 𝒙&

Gaussian conditional probability paths

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Relation for Flow Matching

Flow

ωt(x)

ωt(x|x1)

tx1 + (1→ t)x

Velocity field

ut(x)

ut(x|x1)

(x1 → x)/(1→ t)

Probability path

pt(x)

pt(x|x1)

N (x|tx1, (1→ t)2I)

Boundary conds.

p0 = p

p1 = q

p0 = p

p1 = εx1

p0 = N (0, I)

p1 = εx1

Loss

FlowMatching (FM) (4.22)
D

(
ut(Xt), uω

t (Xt)
)

Conditional FM (CFM) (4.23)
D

(
ut(Xt|X1), uω

t (Xt)
)

OT, Gauss CFM (2.9)
↑uω

t (Xt)→ (X1 →X0)↑2

di!erentiation

solve ODE

di!erentiation

solve ODE

Continuity (3.25)

non-unique solution

Continuity (3.25)

non-unique solution

c
o
n
d
.

e
x
p
e
c
t
a
t
io

n

?
?
?

c
o
n
d
it

io
n
in

g

m
a
r
g
in

a
li
z
a
t
io

n

push-forward X0

push-forward X0

Figure 9 Main objects of the Flow Matching framework and their relationships. A Flow is represented with a
Velocity field defining a random process generating a Probability path . The main idea of Flow Matching is to

break down the construction of a complex flow satisfying the desired Boundary conditions (top row) to conditional

flows (middle row) satisfying simpler Boundary conditions and consequently easier to solve. The arrows indicate
dependencies between di!erent objects; Blue arrows signify relationships employed by the Flow Matching framework.
The Loss column lists the losses for learning the Velocity field , where the CFM loss (middle and bottom row) is
what used in practice. The bottom row lists the simplest FM algorithm instantiation as described in section 2.

where the conditional coupling ϑ0|1(x0|x1) = ϑ0,1(x0, x1)/q(x1) and εx1 is the delta measure centered at x1.
For the independent coupling ϑ0,1(x0, x1) = p(x0)q(x1), the first constraint above reduces to p0|1(x|x1) = p(x).
Because the delta measure does not have a density, the second constraint should be read as

∫
pt|1(x|y)f(y)dy ↓

f(x) as t ↓ 1 for continuous functions f . Note that the boundary conditions (4.5) can be verified plugging
(4.6) into (4.4).

A popular example of a conditional probability path satisfying the conditions in (4.6) was given in (2.2):

N (· | tx1, (1→ t)2I) ↓ εx1(·) as t ↓ 1.

4.3 Deriving generating velocity fields

Equipped with a marginal probability path pt, we now build a velocity field ut generating pt. The generating
velocity field ut is an average of multiple conditional velocity fields ut(x|x1), illustrated in figure 3c, and
satisfying:

ut(·|x1) generates pt|1(·|x1). (4.7)
Then, the marginal velocity field ut(x), generating the marginal path pt(x), illustrated in figure 3d, is given by
averaging the conditional velocity fields ut(x|x1) across target examples:

ut(x) =

∫
ut(x|x1)p1|t(x1|x)dx1. (4.8)

To express the equation above using known terms, recall Bayes’ rule

p1|t(x1|x) =
pt|1(x|x1)q(x1)

pt(x)
, (4.9)

17

Thanks

